Chapter 8: Syntax

LANE 321:
Introduction to Linguistics

Copyright © 2013 Haifa Alroqi
Content adapted from Yule (2010)
When we concentrate on the **structure & ordering** of components within a sentence = studying the **syntax** of a language

- **Syntax** (originally Greek) = ‘putting together’/ ‘arrangement’

Syntax is the study of the rules governing the way words are combined to form phrases and sentences in a language.
• When we set out to provide an analysis of the syntax of a language, we try to adhere to the “all and only” criterion.

• This means that our analysis must account for:
 • all the grammatically correct phrases and sentences and
 • only those grammatically correct phrases and sentences in whatever language we are analyzing.

• In other words, if we write rules for the creation of well-formed structures, we have to check that those rules won’t also lead to ill-formed structures.
The grammar will generate all the well-formed structures of the language.

The grammar will not generate any ill-formed structures.

For example,

We might say informally that, in English,

- A preposition (e.g. *near*) + a noun (e.g. *London*) = a prepositional phrase (*near London*).

- If we follow this rule, we will produce phrases like *near tree* or *with dog*.

- We clearly need to be more careful in forming this rule.

- A preposition + a noun phrase (not just a noun) = a prepositional phrase.

<table>
<thead>
<tr>
<th>NP</th>
<th>Art (Adj) N, Pro, PN</th>
</tr>
</thead>
</table>

So that the revised rule can produce these well-formed structures: *near London, with you, near a tree, with the dog*
• When we have an effective rule such as “a prepositional phrase in English consists of a preposition followed by a noun phrase,” we can imagine an extremely large number of English phrases that could be produced using this rule.
• In fact, the potential number is unlimited.
• This reflects another goal of syntactic analysis, which is:
 • to have a small and finite set of rules that will be capable of producing a large and infinite number of well-formed structures.
• This small and finite set of rules is sometimes described as a generative grammar because it can be used to “generate” or produce sentence structures and not just describe them.
This type of grammar should also be capable of revealing the basis of two other phenomena:

1. how some superficially different sentences are closely related

2. how some superficially similar sentences are in fact different.
Deep and surface structure

- Charlie broke the window.
- The window was broken by Charlie.
- Charlie was the one who broke the window.
- It was Charlie who broke the window.
- Was the window broken by Charlie?

- Different in their *surface structure* = different arrangement or ordering
- BUT they have the same ‘deep’ or underlying *structure* = same basic components (NP + V + NP)
- The deep structure is an abstract level of structural organization in which all the elements determining structural interpretation are represented.
- In short, the grammar must be capable of showing how a single underlying abstract representation can become different surface structures.
Structural ambiguity

- Annie whacked the man with an umbrella.
 - Same surface structure
 - BUT different deep structure
 - What are the two possible meanings/ the two distinct deep structures/ two distinct underlying interpretations here?
- The boy saw the man with the telescope.
- Small boys and girls
- Our syntactic analysis should be capable of showing the structural distinction between these underlying representations.

Structural ambiguity: a situation in which a single phrase or sentence has two (or more) different underlying structures and interpretations.
The boy saw the man with the telescope.

Meaning: Using the telescope, the boy saw the man
The boy saw the man with the telescope.

Meaning: The boy saw the man. The man had a telescope.
Recursive Rules can be applied more than once in generating a structure.

- e.g.
 - repeat prepositional phrase more than once
 - *The gun was on the table.*
 - *The gun was on the table near the window.*
 - *The gun was on the table near the window in the bedroom.*

- Put sentences inside other sentences
 - *Mary helped George*
 - *Cathy knew that Mary helped George.*
 - *John believed that Cathy knew that Mary helped George.*
 - *This is the cat that ate the rat that ate the cheese that was sold by the man that lived in the city that was on the river...*

- No end to recursion that would produce longer complex sentences.
- Our syntactic analysis should account for the fact that a sentence can have another sentence inside it or that a phrase can be repeated as often as required.
One of the most common ways to create a visual representation of syntactic structure is through **tree diagrams**.
Tree diagrams

- *The girl saw a dog*
Symbols used in syntactic analysis

- **S** (= sentence)
- **NP** (= noun phrase)
- **N** (= noun)
- **Art** (= article)
- **V** (= verb)
- **PP** (= prepositional phrase)
Symbols used in syntactic analysis

Three more symbols:

1. → (= consists of)

For example:

- NP → Art N
- It is a shorthand way of saying that a noun phrase consists of an article and a noun.
Symbols used in syntactic description

2. round brackets () (= an optional constituent)

For example:

- The dog = NP
- The small dog = NP
- When we want to use a NP in English, we can include an (Adj), but we do not have to. It is optional.
- NP → Art (Adj) N
- It is a shorthand way of saying that a noun phrase consists of an article (Art) and a noun (N), with the option of including an adjective (Adj) in a specific position between them.
- We can use this notation to generate the dog, the small dog, a cat, a big cat, the book, a boring book, etc.
Symbols used in syntactic description

3. **curly brackets** `{ }` (= only one of the elements enclosed within the curly brackets must be selected.)

For example:

- NP \rightarrow Art N \hspace{1cm} (e.g. *the dog*)
- NP \rightarrow Pro \hspace{1cm} (e.g. *it*)
- NP \rightarrow PN \hspace{1cm} (e.g. *Abeer*)
Symbols used in syntactic analysis

- **S**: sentence
- **NP**: noun phrase
- **PN**: proper noun
- **N**: noun
- **VP**: verb phrase
- **Adv**: adverb
- **V**: verb
- **Adj**: adjective
- **Prep**: preposition
- **Art**: article
- **Pro**: pronoun
- **PP**: prepositional phrase

* ungrammatical sentence

→ consists of / rewrites as

() optional constituent

{ } one and only one of these constituents must be selected
Phrase structure rules

We can think of the tree diagram format in 2 different ways.

1. As a static representation of the structure of the sentence shown at the bottom of the diagram.

2. As a dynamic format – represents a way of generating a very large number of other sentences with similar structures.
This second approach would enable us to generate a very large number of sentences with a very small number of rules.

These rules are called **phrase structure rules**.

Phrase structure rules state that the structure of a phrase of a specific type will consist of one or more constituents in a particular order.

We can use phrase structure rules to present the information of the tree diagram in another format.

Tree diagram

Phrase structure rule

\[
\begin{align*}
&\text{NP} \\
&\text{Art} \quad \text{N}
\end{align*}
\]

\[
\text{NP} \rightarrow \text{Art} \quad \text{N}
\]
Phrase structure rules

- The first rule in the following set of simple phrase structure rules states that “a sentence rewrites as a noun phrase and a verb phrase.”
- The second rule states that “a noun phrase rewrites as either an article plus an optional adjective plus a noun, or a pronoun, or a proper noun”

\[
\begin{align*}
S & \rightarrow \text{NP \ VP} \\
\text{NP} & \rightarrow \{\text{Art (Adj) N, Pro, PN}\} \\
\text{VP} & \rightarrow \text{V NP (PP) (Adv)} \\
\text{PP} & \rightarrow \text{Prep NP}
\end{align*}
\]
Lexical rules

• Phrase structure rules generate structures.

• In order to turn this structure into recognizable English, we also need lexical rules.

PN → {Mary, George} V → {followed, helped, saw}
N → {girl, dog, boy} Adj → {small, crazy}
Art → {a, the} Prep → {near, with}
Pro → {it, you} Adv → {recently, yesterday, slowly}
Lexical rules

- We can rely on these rules to generate the grammatical sentences 1-6, but not the ungrammatical sentences 7-12.

(1) A dog followed the boy. (7) *Dog followed boy.
(2) Mary helped George. (8) *The helped you boy.
(3) George saw the dog. (9) *George Mary dog.
(4) The boy helped you. (10) *Helped George the dog.
(5) It followed Mary. (11) *You it saw.
(6) You saw it. (12) *Mary George helped.
Lexical rules

(1) S
 /
 NP VP
 / /
Art N V Art N
 A dog followed the boy

(6) S
 /
 NP VP
 / /
Pro V NP
You saw it
Movement rules

- Declarative forms (You will help Mary)
- Interrogative forms (Will you help Mary?)
- In making the question, we move one part of the structure to a different position.
- This process is based on a movement rule.

\[
S \rightarrow \text{NP} \text{ Aux} \text{ VP} \\
\text{Aux} \rightarrow \{\text{can, could, should, will, would}\} \\
\text{V} \rightarrow \{\text{follow, help, see}\}
\]
With these components, we can specify a simple movement rule that is involved in the creation of one basic type of question in English.

\[\text{NP} \text{ Aux} \text{ VP} \Rightarrow \text{Aux} \text{ NP} \text{ VP} \]
Movement rules

This type of rule has a special symbol ⇒ and can be illustrated in the process of one tree, on the right, being derived from the tree on the left.
Movement rules

Using this simple rule, we can also generate these other questions:

- Can you see the dog?
- Could the boy see it?
- Should George follow you?
- Would Mary help George?
The simple phrase structure rules listed earlier have no recursive elements.

Each time we start to create an S, we only create a single S (sentence structure).

We actually need to be able to include sentence structures within other sentence structures.

Mary helped George.

Cathy knew that Mary helped George.

John believed that Cathy knew that Mary helped George.
Complement phrases

- Cathy knew that Mary helped George
- that = complementizer (C) =
- The role of that as a complementizer is to introduce a complement phrase (CP)
- that Mary helped George = CP
- New rule:

\[
\text{CP} \quad \xrightarrow{\text{C}} \quad \text{S}
\]

“A complement phrase consists of a complementizer and a sentence.”

- From the example, the CP comes after a V
- This means that we are using the CP as part of a VP (knew that Mary helped George).
- Now, we have a new rule, “A verb phrase consists of a verb and a complement phrase.”

or, \[
\text{VP} \quad \xrightarrow{\text{V}} \quad \text{CP}
\]
Complement phrases

\[S \rightarrow NP \ VP \]
\[VP \rightarrow V \ CP \]
\[CP \rightarrow C \ S \]

John believed that Cathy knew that Mary helped George
Exercises

• Try this:
 • Ahmed thinks that the teacher knows that Muhammad met Hani.
Exercises

took the money

VP

V

took

Art

the

NP

N

money

took the money from the bank

VP

V

took

Art

the

NP

N

money

PP

Prep

from

Art

the

NP

N

bank
The old tree swayed in the wind.
The children put the toy in the box.
The small boy saw George with a crazy dog recently.
Exercises

• Try this:
 • Sarah went to the hospital.
 • He saw John with an amazing car yesterday.
 • I met her yesterday.
Exercises

- Form the phrase structure rules of the following sentences.
 - Can John see it?
 - Should Mary follow the small boy?
- Draw a tree diagram to represent each of the above sentences.
Exercises

• Draw a tree diagram to represent the different syntactic components of the following sentences.

 • The guy met the researcher.
 • The smart guy met the researcher.
 • The smart guy met the famous researcher.

• Now, create a labeled & bracketed analysis of the above sentences.
Exercises

Draw two phrase structure trees representing the two meanings of the sentence:

The magician touched the child with the wand.
Tree diagrams in Arabic

Chapter (67) sûrat l-mulk (Dominion)

(67:1:4) (is) the Dominion, l-mulku
(67:1:3) in Whose Hand biyadihi
(67:1:2) He alladhi
(67:1:1) Blessed is tabåraka

آللَّمُلكُ • N

بيبَدِهِ • PRON

آلِ النَّزِير • N

تَحْرَك • V

PP

S

Sentence
Homework:

P. 107, Questions 1, 3, 4, 5, & 6.

Thank you